
Agglomerative Clustering

via Maximum Incremental Path Integral

Wei Zhanga, Deli Zhaoa, Xiaogang Wang 1b

aDepartment of Information Engineering, The Chinese University of Hong Kong, Shatin,
Hong Kong. E-mail: {wzhang009, zhaodeli}@gmail.com

bDepartment of Electronic Engineering, The Chinese University of Hong Kong, Shatin,
Hong Kong. E-mail: xgwang@ee.cuhk.edu.hk

Abstract

Agglomerative clustering, which iteratively merges small clusters, is com-
monly used for clustering because it is conceptually simple and produces a
hierarchy of clusters. In this paper, we propose a novel graph-structural ag-
glomerative clustering algorithm, where the graph encodes local structures
of data. The idea is to define a structural descriptor of clusters on the graph
and to assume that two clusters have large affinity if their structural descrip-
tors undergo substantial change when merging them into one cluster. A key
insight of this paper to treat a cluster as a dynamical system and its samples
as states. Based on that, Path Integral, which has been introduced in statis-
tical mechanics and quantum mechanics, is utilized to measure the stability
of a dynamical system. It is proposed as the structural descriptor, and the
affinity between two clusters is defined as Incremental Path Integral, which
can be computed in a closed-form exact solution, with linear time complexity
with respect to the maximum size of clusters. A probabilistic justification of
the algorithm based on absorbing random walk is provided. Experimental
comparison on toy data and imagery data shows that it achieves considerable
improvement over the state-of-the-art clustering algorithms.

Keywords: Agglomerative clustering, path integral, graph algorithms,
random walk

1Corresponding author. Address: Rm. 415, Ho Sin Hang Engineering Building, the
Chinese University of Hong Kong, Shatin, Hong Kong. Tel.: (+852)39438283; Fax:
(+852)26035558.

Preprint submitted to Pattern Recognition March 28, 2013

1. Introduction

Clustering is a classical machine learning topic with wide applications in
diverse fields. It includes two major categories [1, 2]: partitional cluster-
ing, which determines all clusters at once, and hierarchical clustering, which
creates a hierarchy of clusters in a bottom-up (or agglomerative) process by
merging small clusters or in a top-down (or divisive) process by dividing large
clusters into small ones. Numerous algorithms have been proposed, such as
k-means [2], spectral clustering [3, 4, 5, 6, 7, 8] and affinity propagation [9],
and achieved great success.

This work stands on the success of agglomerative clustering, which is
commonly used because it is conceptually simple and produces a hierarchy of
clusters. Beginning with a large number of initial small clusters, the agglom-
erative clustering algorithms iteratively select two clusters with the largest
affinity under certain measures to merge, until some stopping condition is
reached. Therefore, the affinity measure of clusters is critically important.
Linkages, e.g., single linkage, complete linkage and average linkage [2], define
the affinity based on inter-cluster pairwise distances. Since pairwise distances
do not well capture the global structures of data, complete linkage and aver-
age linkage fail on clustering data with manifold structures. Although single
linkage performs better in this case, it is very sensitive to noisy distances.
Examples can be found in Fig. 3. Lossy coding theory of multivariate mixed
data [10] characterizes the affinity of two clusters with the variational coding
length of coding the merged cluster against coding the two clusters separately.
It exhibits exceptional performance for clustering multivariate mixed Gaus-
sian or subspace data, but is not suitable for data from other distributions.
There are also approaches based on probabilistic models, such as Bayesian
hierarchical clustering [11]. They all assume the forms of underlying data
distributions, which are unknown in many applications.

In this paper, we propose a novel graph-structural agglomerative cluster-
ing algorithm. Although the power of graphs has been extensively exploited
in clustering [3, 5, 12, 13], semi-supervised learning [14, 15], and manifold
learning [16], they have received little attention in agglomerative clustering.
In our algorithm the pairwise distances are only used to build a neighborhood
graph, since studies [16] show the effectiveness of using local neighborhood
graphs to model data lying on a low-dimensional manifold embedded in a
high-dimensional space. Then a structural descriptor is defined to character-
ize the global structure of a cluster from the local information encoded by the

2

graph. It is assumed that two clusters have large affinity if their structural
descriptors undergo substantial change when merging them into one cluster.

We propose path integral as the structural descriptor of clusters. Paths
are a fundamental concept of graph theory, and are used in many graph-
based algorithms. The description of paths gives rich information about the
data. There has been a lot of research work on studying various aspects of
paths on graphs, such as finding the shortest paths between nodes [17, 18] or
computing the similarity between two nodes over paths [19, 20]. For example,
Saerens et al. [18] proposed the randomized shortest-path problem, which
allows a route agent to follow different paths according to some probability
distributions instead of only following the shortest path connecting a source
and a destination. Their proposed model could be used to measure the dis-
similarity between two nodes accounting for multiple paths. However, the
purpose of this paper is to develop a structural descriptor of clusters, instead
of finding the shortest path between nodes or computing the pairwise simi-
larities between samples. The concept of path integral was first introduced in
statistical mechanics and quantum mechanics [21, 22, 23], where it summed
up the contributions of all possible paths to the evolution of a dynamical
system. In this work, we provide our own formulation of path integral and
its probabilistic interpretation based on absorbing random walk. If we treat
a cluster as a dynamical system, with vertices as states and edge weights as
transition probabilities between states, then the path integral measures the
stability of the dynamical system, i.e. randomly starting with any state of
the dynamical system, the probability of remaining within the same system
after certain steps of transitions. An example is shown in Fig. 1. The affin-
ity of two clusters is defined as the incremental path integral after merging
them. An intuitive explanation is that if two clusters are closely connected,
their stability will greatly increase after merging them. We show that the
incremental path integral can be computed in a closed-form exact solution,
with linear time complexity with respect to the maximum size of clusters.
Experimental comparisons on toy data and imagery data show the excel-
lent performance of the proposed algorithm and its robustness to parameter
settings.

Our algorithm has several advantages compared with existing methods.
First, since it measures the affinity of clusters based on the neighborhood
graph instead of directly on pairwise distances between any pairs of sam-
ples, it can better cluster data on manifolds and is more robust to noisy
distances compared with linkage algorithms [2] widely used in agglomerative

3

a b

c
d

Path Integral = Θ(a c) + Θ(b c) + Θ(c d) + Θ(b d) + Θ(a c d) + Θ(b c d)

Figure 1: A toy example on the path integral description of a cluster. There are four
length-1 paths and two length-2 paths in the cluster. The path integral is computed
as the sum of contributions of these paths. How to obtain each path’s contribution is
described in Section 3. For clarity, the vertices outside the cluster and the outer links are
not shown.

clustering. Second, different from spectral clustering [3, 5] and clustering on
the manifold embedding results, it does not use any relaxation or approx-
imation. The graph structural merging strategy also makes our algorithm
more robust to noisy links than spectral clustering, because our structural
descriptor involves solving a linear system, while the spectral clustering uti-
lizes eigen-decomposition. Solving eigen-vectors is more sensitive to noise
than solving a linear system [24, 12]. Examples in the bottom row of Fig. 3
show that our algorithm can handle for multi-scale data, i.e., a data set that
contain structures with different densities and sizes, which is the limitation
of spectral clustering [25, 26]. Third, it only requires the pairwise distances
or similarities of samples without any assumptions on the underlying data
distributions. This is useful in the case when the vector representations of
data are not available. Therefore, it has better flexibility and generalization
than other agglomerative clustering methods such as lossy coding theory [10]
and Bayesian hierarchical clustering [11].

The paper is organized as follows. For ease of reading, the overall cluster-
ing algorithm is first outlined in Section 2. Then, the theoretical framework
of path integral and incremental path integral are presented in Section 3.
Section 4 provides a probabilistic interpretation of our algorithm based on
absorbing random walk. Experimental validations and conclusion are given
in Section 5 and 6, respectively.

2. Graph-Structural Agglomerative Clustering

Our algorithm iteratively merges two clusters with maximum affinity on
a directed graph.

4

Building the digraph. Given a set of sample vectors X = {x1,x2, · · · ,xn},
we build a directed graph G = (V,E), where V is the set of vertices corre-
sponding to the samples in X , and E is the set of edges connecting vertices.
The graph is associated with a weighted adjacency matrix W = [wij], where
wij is the pairwise similarity between xi and xj defined as

wij =

{
exp

(
−dist(i,j)2

σ2

)
, if xj ∈ NK

i ,

0, otherwise.
(1)

dist(i, j) is the distance between xi and xj , and NK
i is the set of K-nearest

neighbors of xi. If xj ∈ NK
i , there is an edge pointing from xi to xj with

weight wij . σ2 is estimated by σ2 = [
∑n

i=1

∑
xj∈N 3

i
dist(i, j)2]/[3n(− ln a)].2

K and a are free parameters to be set.
We define a random walk model on this directed graph. Denote the tran-

sition probability matrix as P, whose element pij is the one-step transition
probability from vertex i to vertex j. P is calculated as

P = D−1W, (2)

where D is a diagonal matrix whose diagonal element dii =
∑n

j=1wij , such
that

∑n
j=1 pij = 1. The path integral of a cluster is computed by summing

the paths within the cluster on the directed graph weighted by transition
probabilities.

Affinity measure of clusters. Given two clusters Ca and Cb, their
structural affinity is measured as the amount of incremental path integral
ACa,Cb when merging them, i.e.,

ACa,Cb = (SCa|Ca∪Cb − SCa) + (SCb|Ca∪Cb − SCb). (3)

SCa is the path integral descriptor of Ca and sums up all the paths in
Ca. SCa|Ca∪Cb is the conditional path integral descriptor. All the paths to
be counted lie in Ca ∪ Cb. However, their starting and ending vertices must
be within Ca. If the vertices in Ca and Cb are strongly connected, merging
them will create many new paths for the pairs of vertices in Ca, and therefore
SCa|Ca∪Cb will be much larger than SCa . Section 4 will show that SCa measures

2It is equivalent to setting the geometric mean of weights associated with edges pointing
to 3-nearest-neighbors as a, i.e., (

∏n
i=1

∏
xj∈N 3

i
wij)

1/(3n) = a.

5

Cluster bCluster a Added paths in Cluster a Added paths in Cluster b

Figure 2: An illustration of incremental path integral. After merging Ca and Cb, there are
two new (red) paths which are in Ca ∪Cb and whose starting and ending vertices are both
in Ca. Similarly, there are also two new (green) paths for Cb.

the cluster’s stability, if Ca is treated as a dynamical system. An example
for illustration is shown in Fig. 2. The closed-form expressions of SCa and
SCa|Ca∪Cb are given in Eq. (9) and Eq. (12), respectively. The computational
complexity is linear with respect to the maximum size of clusters. Please
refer to Section 3.4 for the details of efficient computation.

Initial clusters. We use a simple nearest neighbor merging algorithm
to obtain initial clusters. First, each sample and its nearest neighbor form
a cluster and we obtain n clusters, each of which has two samples. Then,
the clusters are merged to remove duplicated samples, i.e., we merge two
clusters if their intersection is nonempty, until the number of clusters cannot
be reduced.

The overall algorithm is presented in Algorithm 1.

3. Incremental Path Integral: A Structural Affinity Measure

A key component of the proposed algorithm is to compute path integral.
In this section, we will introduce the theoretical framework of path integral,
including its formal definition and efficient computation.

3.1. Path Integral as A Structural Descriptor

Consider a subgraph GC = (VC, EC) with transition probability matrix
PC corresponding to a cluster C. The path integral of a cluster is defined as
follows.

Definition 3.1. The path integral of a cluster C is

SC =
1

|C|2
∑
γ∈ΓC

Θ(γ), (4)

where ΓC is the set of all the paths in C, and Θ(γ) is the contribution or
weight of a path γ.

6

Algorithm 1 Agglomerative Clustering via Maximum Incremental Path In-
tegral

Input: a set of n sample vectors X = {x1,x2, · · · ,xn}, and the target
number of clusters nT .
Build the graph G with k-nearest-neighbors and compute its weighted
adjacency matrix W with Eq. (1);
Get the transition probability matrix P with Eq. (2);
Form nC initial clusters CC = {C1, · · · , CnC}, i.e., assign each sample xi to
a cluster, using nearest neighbor merging.
while nC > nT do
Search two clusters Ca and Cb, such that {Ca, Cb} = argmaxCa,Cb∈CC ACa,Cb ,
where ACa,Cb is the affinity measure between Ca and Cb, computed using

ACa,Cb = (SCa|Ca∪Cb − SCa) + (SCb|Ca∪Cb − SCb).

SCa|Ca∪Cb is computed as

SCa|Ca∪Cb =
1

|Ca|21
T
Ca(I− zPCa∪Cb)

−11Ca .

And SCa is computed as

SCa =
1

|Ca|21
T
Ca(I− zPCa)

−11Ca .

SCb|Ca∪Cb and SCb are computed in a similar way.
CC ← {CC \ {Ca, Cb}} ∪ {Ca ∪ Cb}}, and nC = nC − 1.

end while
Output: CC.

7

The name of path integral comes from quantum mechanics [21, 22]. It
was proposed as the functional integral on the path set in a general form.
In our implementation, the quantity SC is discretized as the sum of weights
over all the paths. But we still inherit the name to make it consistent. The
path integral is a generalization of path counting, via considering the path-
specific weights. If we divide the path set by selecting the starting and ending
vertices of the path, we can rewrite the path integral as follows.

SC =
1

|C|2
|C|∑

i,j=1

sij , (5)

where sij is unnormalized pairwise path integral 3 over all the paths from i to j
on GC. Generally speaking, the number of paths in a cluster C is proportional
to |C|2. SC is normalized by being divided with |C|2, such that the clustering
results based on path integral in later steps are not biased by cluster size;
otherwise, the proposed algorithm prefers to merge large clusters.

3.2. Unnormalized Fixed-Length Path Integral

Given the starting vertex i and ending vertex j, the unnormalized fixed-
length path integral is the simplest case for discussion. Let γ = {u0 → u1 →
· · · → uk−1 → uk}(u0 = i, uk = j, u1, · · · , uk−1 ∈ VC) denote any directed
path of length k from i to j in GC, i.e., γ is a sequence of vertex indices from
i to j and every two consecutive vertices us and us+1 in γ are connected by
an edge in the subgraph GC. We define the contribution of a path γ as

Pr(γ) = pu0u1pu1u2 · · · puk−1uk
, (6)

i.e., the probability of the transition from i to j along path γ.

Definition 3.2. Given that Γ
(k)
ij is the set of all the paths of length k from

i to j on GC, the unnormalized fixed-length path integral over Γ
(k)
ij is

s
(k)
ij =

∑
γ∈Γ(k)

ij

Pr(γ) =
∑

γ∈Γ(k)
ij

k∏
s=1

pus−1,us, (7)

where u0 = i, uk = j.

3When path integral was first proposed in quantum mechanics [21, 22], it was normal-
ized as shown in Eq(4). Therefore we call sij defined in Eq(8) unnormalized pairwise path
integral. Similarly, we call skij defined in Eq(7) unnormalized fixed-length path integral.

8

Remark. The value of s
(k)
ij is also equal to the k-step transition probability

from i to j, under an absorbing random walk model (Please refer to the
details in Section 4).

3.3. Unnormalized Pairwise Path Integral by Integrating Paths of Different
Lengths

All the paths of possible lengths from 1 to∞ play a role in the structural
descriptor of a cluster. To integrate all the paths, we define the unnormalized
pairwise path integral as the form of a generating function.

Definition 3.3. The unnormalized pairwise path integral over all the paths
(of lengths from 1 to∞) from i to j in GC is defined as a generating function

sij = δij +
∞∑
k=1

zks
(k)
ij = δij +

∞∑
k=1

zk
∑

γ∈Γ(k)
ij

k∏
s=1

pus−1,us, (8)

where u0 = i, uk = j, 0 < z < 1 and δij is the Kronecker delta function
defined as δij = 1 if i = j and δij = 0 otherwise.

Remark. The unnormalized pairwise path integral integrates the unnormal-
ized fixed-length path integrals of length from 1 to∞, with weights controlled
by z. The choice of z < 1 ensures that short paths are favored over long paths,
because the vertices in a “good” cluster should be connected by many short
paths.

3.4. Computing the Path Integral

We have the following theorem for efficient computation of the path in-
tegral.

Theorem 3.1. sij always converges, and sij = [(I− zPC)−1]ij, i.e., the (i, j)-

element of (I − zPC)−1, where PC is the submatrix of P by selecting the
samples in C. If we define SC = [sij]i,j∈C, we have SC = (I − zPC)−1. Then,
we can compute the path integral as the structural descriptor of cluster C as
follows.

SC =
1

|C|21
TSC1 =

1

|C|21
T (I− zPC)−11, (9)

where 1 is all-one column vector.

9

Proposition 3.2. (I − zPC) is a strictly diagonally dominant matrix with
the ∞-norm condition number no more than (1 + z)/(1− z).

Please refer to Appendix A and Appendix B for the proofs of Theorem
3.1 and Proposition 3.2.

Efficient computation. Note that the inverse of the matrix (I − zPC)
does not need to be explicitly computed. The computation of SC only involves
solving a linear system

(I− zPC)y = 1, (10)

and then

SC =
1

|C|21
Ty. (11)

For a large cluster, (I − zPC) is sparse4. As the sparse linear system has
the nice property in Proposition 3.2 (empirically we choose a small z in
experiments), it can be efficiently solved by iterative methods [27], with a
complexity of O(|C|).

Incremental path integral. Given two clusters Ca and Cb, their incre-
mental path integral is computed from Eq. (3). Similar to Theorem 3.1, the
conditional path integral in Eq. (3) is computed as

SCa|Ca∪Cb =
1

|Ca|21
T
Ca(I− zPCa∪Cb)

−11Ca , (12)

where 1Ca is the vector in which the elements corresponding to the vertices
in Ca are all one and other elements are zero.

Finding exemplars of clusters. When the agglomerative clustering
stops, the exemplar of each cluster C can be found by selecting the sample i
with the largest value of∑

j∈C
(sji + sij) = (1T

{i}(I− zPC)−11+ 1T (I− zPC)−11{i}). (13)

This quantity is the path integral on the paths from any vertex to i and
from i to any vertex in C. It reflects the vertex i’s incoming and outgoing
connections to samples in C.

4Graph G, which is built by K-nearest-neighbors, is not fully connected and only has a
relatively small number of edges. Therefore, its transition probability matrix P is sparse
according to Eq (1). PC is the submatrix of P by selecting the samples in C, and is also
parse.

10

3.5. Discussions
Connection and comparison with diffusion kernels and connec-

tivity kernels. sij in Eq. (8) can be viewed as the structural similarity
between samples i and j if cluster C is equal to the whole data set. This view
brings the connection to the von Neumann kernel [28, 29], which is one of the
diffusion kernels [19] defined on the whole graph and has been successfully
applied to computing similarities between vertices [20]. This kernel view has
profound theoretical and practical significance, yet it is not the focus of this
paper. We focus on a novel perspective of characterizing the structure of a
cluster instead of similarities of samples. Note that our clustering algorithm,
from a novel graph structural view of agglomerative clustering, is significantly
different from directly using the similarities derived from the von Neumann
kernel or any other path-based similarity [30, 31] (such as the connectivity
kernel [31]) in an existing clustering algorithm.

The difference exists in three aspects. Firstly, these methods first re-
compute similarities of samples over graphs and then apply the refined sim-
ilarities to an existing clustering algorithm. The strategy of splitting clus-
tering into two steps could be suboptimal, while our approach directly com-
pare the structural affinity between clusters without computing similarities
of samples. Since the ultimate goal is to compute the affinity of clusters,
there is no need to have an extra step of re-computing the similarities of
samples. Notice that the objective of diffusion kernels or connectivity ker-
nels is to optimize sample similarity instead of cluster affinity. Secondly,
diffusion kernels and connectivity kernels compute sample similarities from
the whole graph. When they are used to compare the affinity of two clusters,
samples outside the clusters get involved. Our sij is computed on a single
cluster. Considering the subgraphs of clusters is enough, since the affinity
between clusters is mainly determined by local structures. Thirdly, in our
efficient implementation, sij is actually not computed and the kernel matrix
S = (I − zP)−1 is dense. Instead, the path integral is directly obtained by
efficiently solving a sparse linear system in Eq. (10) and (11). Experimental
results in Section 5 show that our approach outperform both the diffusion
kernel and the connectivity kernel.

Comparison with commute/hitting time based algorithms. The
commute time [32] and hitting time [33] of a random walk have been used for
clustering. However, they are all implemented in two steps: computing affini-
ties between samples using commute time or hitting time, and then applying
an existing clustering algorithm. As previously discussed, this strategy could

11

be sub-optimal. Our approach computes the affinity between clusters directly
by measuring the structural changes, and our incremental path integral has
significant difference with their affinities.

Comparison with zeta function of a graph. Cycles, i.e., self-connecting
paths, were exploited in zeta function based clustering [34]. Since our path
integral considers all the paths within clusters, it captures more information
of cluster structures.

Deciding the number of clusters. For some clustering tasks in real-
world applications, it is sometimes required to automatically determine the
number of clusters from data. The accurate determination of cluster numbers
is a difficult problem and also a specific research topic in the field of pattern
clustering. For hierarchical agglomerative clustering, a commonly used idea
is to build the complete hierarchy of clusters. Initialized by viewing each
data point as a cluster, it merges samples to be clusters until all the samples
as one cluster. Investigating the largest gaps between adjacent layers in the
dendrogram rationally determines the number of clusters. For instance, dis-
similarity increments are applied in [35] and a variational cluster descriptor
quantized by the zeta function of a graph is adopted in our previous work
[34]. In complex networks, a quantizer called Q-function is frequently used to
determine the number of communities (clusters) [36]. The Q-function is the
difference between the number of edges within communities and the expected
number of such edges. The number of clusters is specified at the maxima of
Q-function. Interested readers may refer to these papers for further inves-
tigation. These techniques can be well applied to our approach to decide
the number of clusters. They are not our contribution, and therefore not
evaluated in this paper.

4. Absorbing Random Walk: A Probabilistic View

An absorbing random walk is a special Markov chain which has absorb-
ing states, i.e., states which once reached cannot be transitioned out of. It
provides a probabilistic view of our algorithm. For a cluster C, we construct
an absorbing random walk by setting all the samples outside C as absorbing
states, i.e., pii = 1, pij = 0, for all i �∈ C and j �= i.

Theorem 4.1. Let Yk be the state of the random walk at time k. Given
that the random walk starts with a uniform distribution over states in C, i.e.,

12

Pr(Y0 = i) = 1
|C| , for all i ∈ C, and Pr(Y0 = i) = 0, for all i �∈ C, we have

SC =
1

|C|
∞∑
k=0

zkPr(Yk ∈ C|Y0 ∈ C). (14)

Please see the proof in Appendix C. Here Pr(Yk ∈ C|Y0 ∈ C) is the
probability of remaining within the cluster after k steps. The absorbing
probability after k steps is

Pr(Yk �∈ C|Y0 ∈ C) = 1− Pr(Yk ∈ C|Y0 ∈ C). (15)

According to the description of Section 3, from the path integral point of
view, a good cluster with many paths inside the cluster should maximize SC .
According to Theorem 4.1, we can understand it from another perspective
that a good cluster should keep the state not to be easily absorbed by states
outside the cluster. In this sense, if a cluster is treated as a dynamical
system, SC measures its stability. The conditional path integral SCa|Ca∪Cb can
be understood in the same way.

Then, to measure the affinity between Ca and Cb, we have Eq. (3). The
first part (SCa|Ca∪Cb − SCa) measures the separability of Cb from Ca ∪ Cb, by
the increasing amount of absorbing probability of random walk started in
Ca, if we select the states in Cb from Ca ∪ Cb and set them to be absorbing
states. Apparently, if Ca and Cb come from the same cluster, the increasing
absorbing probability should be large. Similar analysis can be applied for
the second part (SCb|Ca∪Cb−SCb). This explains why Eq. (3) is a good affinity
measure between clusters.

5. Experiments

We conduct experiments on toy data and multiple benchmark imagery
data sets to evaluate the proposed Path Integral based Clustering (PIC) al-
gorithm. Eleven representative algorithms are taken into comparison, i.e., k-
medoids (k-med) [2], Average linkage (A-link), Single linkage (S-link), Com-
plete linkage (C-link) [2], Affinity Propagation (AP) [9], Normalized Cuts
(NCuts) [3], NJW algorithm [5], Commute Time based clustering (CT) [32],
Zeta function based clustering (Zell) [34], connectivity kernel based clustering
(C-kernel) [31], and diffusion kernel based clustering (D-kernel). Here we use
k-medoids instead of k-means because it can handle the case where distances

13

between points are not measured by Euclidean distances. Although diffu-
sion kernels [28, 29, 19, 20] have been used to compute similarities between
samples, we have not found any papers of directly using them for cluster-
ing. In D-kernel, we first use the von Neumann kernel [19] to compute the
similarities of samples and then use the average linkage algorithm to cluster
samples based the similarities. For fair comparison, we run A-link, S-link,
C-link, NCuts, NJW, CT, Zell, D-kernel, C-kernel and our algorithm on the
graphs built by the same parameters, which are set as z = 0.01, a = 0.95
and K = 20.

We adopt the widely used Normalized Mutual Information (NMI) [37]
and Clustering Error (CE) [38] to quantitatively evaluate the performance
of clustering algorithms. The NMI quantifies the normalized statistical in-
formation shared between two distributions. A larger NMI value indicates
a better clustering result. The CE is defined as the minimum overall error
rate among all possible permutation mappings between true class labels and
clusters. A smaller CE value indicates a better clustering result.

5.1. On Synthetic Data

We first evaluate the algorithms on three synthetic datasets and the re-
sults are visualized in Fig. 3.5 All the algorithms use the ground-truth cluster
numbers as input. The two datasets in the top rows cannot be clustered in
a meaningful way by methods that assume compact shapes of clusters, like
k-medoids, AP, and C-link. A-link and S-link perform better, but suffer
from noisy distances caused by perturbations. For the multi-scale dataset
in the bottom row, S-link fails. NCuts and NJW do not work well for such
multi-scale data either, even if the scale parameters K and a are exhaustively
explored and the results with the best NMI are reported. PIC works very
well on all these data sets, even simply using the default parameters. Note
that we do not use any advanced graph construction techniques [25, 26], such
as using variable bandwidth. Surprisingly, PIC is not sensitive to the param-
eters for graph. When we vary K in the set 10 × {1, 2, ..., 5}, and σ in the
set σ = σ0 × 2r, r ∈ {−2.5,−2, ..., 2, 2.5}, where σ0 corresponds to a = 0.95,
the clustering results are almost the same.

We also evaluate the performance of clustering algorithms under differ-
ent types and different levels of noise. Figure 4 shows the NMI scores of

5Because of space limit, only some algorithms are selected.

14

Table 1: Statistics of imagery data benchmarks.

Data set USPS MNIST FRGC-T PubFig Caltech-256

No. of samples 11000 5139 12776 5803 600
No. of clusters 10 5 222 60 6
Min. cluster size 1100 980 36 62 100
Max. cluster size 1100 1135 64 100 100
Dimensionality 256 784 2891 2891 4200

clustering results after adding Gaussian noise or structural noise to the syn-
thetic datasets I-III in Figure 3. For each noise level on each dataset, the
experiments repeat for 20 times. The curves show the average NMI scores
and bars show the standard deviations. In each original dataset in Figure
3, there multiple structures, and data points belonging to each structure
are perturbed with a Gaussian distribution. Different structures have differ-
ent Gaussian noise. In Figure 4, we increase the standard deviations of the
original Gaussian noise by up to five times. The experimental results show
that the performance of other clustering methods drops significantly when
Gaussian noise increases and their standard deviations also increase. Our
approach is much more stable under different levels of Gaussian noise. The
structural noise is added by randomly removing a certain proportion of data
points from the original datasets in Figure 3, such that some cluster struc-
tures may be destroyed. Experimental results show that our method is much
more stable with the existence of structural noise. The performance of other
methods in comparison either decreases or show large standard deviations,
when a significant portion of points are randomly removed.

5.2. On Imagery Data

We carry out experiments on five real image datasets: hand-written
digit images from MNIST and USPS databases6, cropped facial images from
FRGC ver2.0 [39] and PubFig databases [40], and object images from Caltech-
256 database [41]. For MNIST, we select all the images of digits from 0 to
4 in the testing set. For FRGC ver2.0, we use all the facial images in the
training set of experiment 4. For PubFig, we use all the people in the devel-
opment set. We collect the first 100 images of each person, if the person has

6Both are downloaded from http://www.cs.nyu.edu/~roweis/data.html.

15

Table 2: Quantitative clustering results in NMI on imagery data. The best values are
bold.

Data set USPS MNIST FRGC-T PubFig Caltech-256

k-med 0.310 0.483 0.540 0.363 0.593
AP 0.313 0.451 0.600 0.398 0.509

A-link 0.688 0.845 0.727 0.573 0.721
S-link 0.013 0.012 0.292 0.067 0.045
C-link 0.029 0.022 0.241 0.135 0.069
NCuts 0.628 0.792 0.709 0.537 0.722
NJW 0.619 0.795 0.723 0.553 0.722
CT 0.646 0.831 0.726 0.555 0.732
Zell 0.772 0.865 0.670 0.429 0.710

C-kernel 0.661 0.916 0.727 0.570 0.735
D-kernel 0.623 0.804 0.716 0.562 0.704
PIC 0.825 0.940 0.747 0.602 0.761

more than 100 images. Otherwise, we collect all the images of the person.
For Caltech-256, we use six categories (hibiscus, ketch, leopards, motorbikes,
airplanes, faces-easy), and select the first 100 images in each category for
experiments. For the other data sets, we use all the images. For digits, we
use the intensities of pixels as features and Euclidean distance. For facial
images, we use the local binary patterns as features [42] and χ2 distance.
For object images, we use the spatial pyramid features [43] and χ2 distance.
The statistics of the data sets used in our experiments are summarized in
Table 1. The last three sets are extremely challenging for the clustering task.
The faces in the FRGC-T set have large lighting and expression variations,
and some faces are blurred. The PubFig data set consists of uncontrolled
real-world faces collected from the internet. The images in the Caltech-256
set have large intra-category variations.

The quantitative results, measured in NMI and CE, are given in Table 2
and 3, respectively. As k-medoids is sensitive to initialization, we select the
result with the smallest intra-cluster variations among 1000 random runs,
and thus its performance is comparable with AP’s7. S-link and C-link do

7The input parameter of AP is a preference value. Therefore, we search for an appro-

16

Table 3: Quantitative clustering results in CE on imagery data. The best values are bold.

Data set USPS MNIST FRGC-T PubFig Caltech-256

k-med 0.661 0.324 0.712 0.723 0.258
AP 0.623 0.382 0.649 0.680 0.392

A-link 0.594 0.205 0.648 0.548 0.173
S-link 0.900 0.779 0.904 0.976 0.828
C-link 0.899 0.778 0.963 0.967 0.827
NCuts 0.433 0.122 0.565 0.538 0.163
NJW 0.419 0.120 0.585 0.538 0.163
CT 0.407 0.101 0.578 0.558 0.157
Zell 0.412 0.206 0.565 0.762 0.277

C-kernel 0.414 0.025 0.596 0.528 0.158
D-kernel 0.444 0.281 0.640 0.558 0.558
PIC 0.246 0.016 0.560 0.504 0.153

not performs well on most real data sets, while A-link performs better. This
is due to large intra-cluster variations and the complex cluster structures in
real data sets. NCuts, NJW, CT, Zell, and C-kernel have good performance
on most data sets. Our PIC performs the best among all the algorithms.

To visually compare the algorithms, we use the exemplar of a cluster to
show the clustering result of a given sample. If a sample is in an incorrect
cluster, the exemplar should not be correct. The results of k-medoids, AP
and PIC on the Caltech-256 set are shown in Fig. 5. Our PIC algorithm can
detect the exemplar of each cluster as introduced in Section 3.4, while NCuts,
NJW, CT, and Zell cannot. The samples are selected as follows: for each
category, we search the sample with the largest average distance to the other
samples in the same category (i.e., the most difficult sample for clustering in
each category).

priate preference value, so that the number of output clusters is equal to the number of
ground-truth clusters.

17

6. Conclusion

In this paper, we propose a novel graph-structural agglomerative clus-
tering approach using path integral as the structural descriptor of clusters
and incremental path integral as the affinity measurement of clusters. The
incremental path integral measures the structural change of clusters after the
merging and its closed-form exact solution can be efficiently computed in a
linear time complexity. A probabilistic view of our algorithm from absorbing
random walk is provided. Extensive experimental comparisons show that
the new algorithm outperforms the state-of-the-art clustering methods. The
success of this new graph-structural agglomerative framework inspire us to
find more effective cluster descriptors in the future work.

Appendix A. Proof of Theorem 3.1

Proof. By matrix computations, the (i, j)-element of Pk
C is

[
Pk

C
]
ij
=

∑
γ∈Γ(k)

ij

k∏
s=1

pus−1,us.

By Definition 3.3, we have

sij = δij +

∞∑
k=1

zk
∑

γ∈Γ(k)
ij

k∏
s=1

pus−1,us

= δij +

∞∑
k=1

zk[Pk
C]ij

=

[
I+

∞∑
k=1

zkPk
C

]
ij

= [(I− zPC)−1]ij

By Gershgorin disk theorem [24], the spectral radius of PC has an upper
limit

ρ(PC) ≤ max
i∈C

∑
j∈C
|pij| ≤ 1.

So, ρ(zPC) < 1, which guarantees that the series I+
∑∞

k=1 z
kPk

C converge.

18

Appendix B. Proof of Proposition 3.2

Proof. ∀i ∈ C, we have ∑j∈C |pij | ≤ 1. Since z < 1,
∑

j∈C |zpij | < 1 and thus
|1 − zpii| >

∑
j �=i,j∈C |zpij |, i.e., (I − zPC) is a strictly diagonally dominant

matrix.
The induced ∞-norm of (I− zPC) is given by

‖(I− zPC)‖∞ = max
i∈C

∑
j∈C
|δij − zpij | ≤ max

i∈C

∑
j∈C

δij + zpij ≤ 1 + z.

The ∞-norm of (I− zPC)−1 is given by

‖(I− zPC)−1‖∞ = ‖(I− zPC)−11‖∞
= ‖(∑∞

k=0 z
kPk

C)1‖∞
≤ ∑∞

k=0 z
k‖Pk

C1‖∞
≤ ∑∞

k=0 z
k = 1

1−z
.

So, we have the condition number

κ(I− zPC) = ‖(I− zPC)‖∞‖(I− zPC)−1‖∞ ≤ 1 + z

1− z
.

Appendix C. Proof of Theorem 4.1

Proof. Without loss of generality, the index of the vertices are permuted so
that the transition probability matrix is partitioned as

P =

[
PC PC,C
PC,C PC

]
,

where PC,C is the transition probabilities from the vertices in C to C.
The absorbing random walk has the transition probability matrix

P′ =
[
PC PC,C
0 PC

]

19

From (9), we can see that

SC =
1

|C|21
T (I− zPC)−11

=
1

|C|21
T (

∞∑
k=0

zkPk
C)1

=
1

|C|21
T
C (

∞∑
k=0

zk(P′)k)1C

=
1

|C|
∞∑
k=0

zk
∑

i∈C,j∈C
Pr(Y0 = i)Pr(Yk = j|Y0 = i)

=
1

|C|
∞∑
k=0

zkPr(Yk ∈ C|Y0 ∈ C).

Acknowledgement

This work is supported by the General Research Fund sponsored by the
Research Grants Council of Hong Kong (Project No. CUHK417110 and
CUHK417011) and National Natural Science Foundation of China (Project
No. 61005057).

References

[1] A. Jain, M. Murty, P. Flynn, Data clustering: A review, ACM Comput-
ing Surveys 31 (3) (1999) 264–323.

[2] T. Hastie, R. Tibshirani, J. Friedman, The elements of statistical learn-
ing: Data mining, inference, and prediction, 2nd Edition, Springer Ver-
lag, 2009.

[3] J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 22 (8) (2000) 888–
905.

[4] M. Meila, J. Shi, A random walks view of spectral segmentation, in:
AISTATS, 2001.

20

[5] A. Ng, M. Jordan, Y. Weiss, On spectral clustering: Analysis and an al-
gorithm, in: Advances in Neural Information Processing Systems, 2001.

[6] S. Yu, J. Shi, Multiclass spectral clustering, in: Proc. International Conf.
on Computer Vision, 2003.

[7] F. Bach, M. Jordan, Learning spectral clustering, in: Advances in Neural
Information Processing Systems, 2004.

[8] U. Von Luxburg, M. Belkin, O. Bousquet, Consistency of spectral clus-
tering, The Annals of Statistics 36 (2) (2008) 555–586.

[9] B. Frey, D. Dueck, Clustering by passing messages between data points,
Science 315 (5814) (2007) 972–976.

[10] Y. Ma, H. Derksen, W. Hong, J. Wright, Segmentation of multivariate
mixed data via lossy data coding and compression, IEEE Transactions
on Pattern Analysis and Machine Intelligence 29 (9) (2007) 1546–1562.

[11] K. Heller, Z. Ghahramani, Bayesian hierarchical clustering, in: Interna-
tional Conf. on Machine Learning, 2005.

[12] L. Grady, E. Schwartz, Isoperimetric graph partitioning for image seg-
mentation, IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 28 (3) (2006) 469–475.

[13] M. Pavan, M. Pelillo, Dominant sets and pairwise clustering, IEEE
Transactions on Pattern Analysis and Machine Intelligence 29 (1) (2007)
167–172.

[14] X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning using
gaussian fields and harmonic functions, in: International Conf. on Ma-
chine Learning, 2003.

[15] D. Zhou, O. Bousquet, T. Lai, J. Weston, B. Schölkopf, Learning with
local and global consistency, in: Advances in Neural Information Pro-
cessing Systems, 2004.

[16] M. Belkin, P. Niyogi, Laplacian eigenmaps for dimensionality reduction
and data representation, Neural Computation 15 (6) (2003) 1373–1396.

21

[17] F. Bavaud, G. Guex, Interpolating between random walks and shortest
paths: A path functional approach, arXiv:1207.1253.

[18] M. Saerens, Y. Achbany, F. Fouss, L. Yen, Randomized shortest-path
problems: Two related models, Neural Computation 21 (2009) 2363–
2404.

[19] R. Kondor, J. Lafferty, Diffusion kernels on graphs and other discrete
input spaces, in: International Conf. on Machine Learning, 2002.

[20] J. Kandola, J. Shawe-taylor, N. Cristianini, Learning semantic similar-
ity, in: Advances in Neural Information Processing Systems, 2003.

[21] R. P. Feynman, Space-time approach to non-relativistic quantum me-
chanics, Rev. Mod. Phys. 20 (367-387) 1948.

[22] H. Kleinert, Path integrals in quantum mechanics, statistics, polymer
physics, and financial markets, 3rd Edition, World Scientific, 2004.

[23] J. Rudnick, G. Gaspari, Elements of the random walk: An introduction
for advanced students and researchers, Cambridge Univ. Press, 2004.

[24] R. Horn, C. Johnson, Matrix analysis, Cambridge University Press,
2005.

[25] L. Zelnik-Manor, P. Perona, Self-tuning spectral clustering, in: Ad-
vances in Neural Information Processing Systems, 2005.

[26] B. Nadler, M. Galun, Fundamental limitations of spectral clustering, in:
Advances in Neural Information Processing Systems, 2007.

[27] Y. Saad, Iterative methods for sparse linear systems, PWS Pub. Co.,
1996.

[28] J. Shawe-Taylor, N. Cristianini, Kernel methods for pattern analysis,
Cambridge Univ. Press, 2004.

[29] J. M. Kleinberg, Authoritative sources in a hyperlinked environment,
Journal of the ACM 46 (1999) 604–632.

[30] B. Fischer, J. Buhmann, Path-based clustering for grouping of smooth
curves and texture segmentation, IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 25 (4) (2003) 513–518.

22

[31] B. Fischer, V. Roth, J. Buhmann, Clustering with the connectivity ker-
nel, in: Advances in Neural Information Processing Systems, 2004.

[32] H. Qiu, E. Hancock, Clustering and embedding using commute times,
IEEE Transactions on Pattern Analysis and Machine Intelligence 29 (11)
(2007) 1873–1890.

[33] M. Chen, J. Liu, X. Tang, Clustering via random walk hitting time on
directed graphs, in: Proc. 23rd AAAI Conference on Artiicial Intelli-
gence, 2008.

[34] D. Zhao, X. Tang, Cyclizing clusters via zeta function of a graph, in:
Advances in Neural Information Processing Systems, 2008.

[35] A. Fred, J. Leitao, A new cluster isolation criterion based on dissimi-
larity increments, IEEE Transactions on Pattern Analysis and Machine
Intelligence 25 (2003) 944–958.

[36] M. E. J. Newman, Finding community structure in networks using the
eigenvectors of matrices, Phys. Rev. E 74.

[37] A. Strehl, J. Ghosh, Cluster ensembles – A knowledge reuse framework
for combining multiple partitions, Journal of Machine Learning Research
3 (2003) 583–617.

[38] M. Wu, B. Schölkopf, A local learning approach for clustering, in: Ad-
vances in Neural Information Processing Systems, 2007.

[39] P. Phillips, P. Flynn, T. Scruggs, K. Bowyer, J. Chang, K. Hoffman,
J. Marques, J. Min, W. Worek, Overview of the face recognition grand
challenge, in: Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition, 2005.

[40] N. Kumar, A. C. Berg, P. N. Belhumeur, S. K. Nayar, Attribute and
simile classifiers for face verification, in: Proc. International Conf. on
Computer Vision, 2009.

[41] G. Griffin, A. Holub, P. Perona, Caltech-256 object category dataset,
Tech. Rep. 7694, Caltech (2007).

23

[42] T. Ahonen, A. Hadid, M. Pietikainen, Face description with local binary
patterns: Application to face recognition, IEEE Transactions on Pattern
Analysis and Machine Intelligence 28 (12) (2006) 2037–2041.

[43] S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories, in: Proc.
IEEE Conf. on Computer Vision and Pattern Recognition, 2006.

24

A-link (0.696) S-link (0.524) PIC (1)

(a) Synthetic dataset I

A-link (0.867) S-link (0.549) PIC (1)

(b) Synthetic dataset II

AP (0.362) A-link (0.551) S-link (0.016)

NCuts (0.557) NJW (0.479) PIC (0.967)

(c) Synthetic dataset III

Figure 3: Clustering results on three synthetic datasets (best viewed on screen) (a)-(c).
The NMI results are shown in the brackets. The best values are bold.

25

1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PIC
NJW
NCuts
S−link
A−link
AP

(a1) Gaussian noise on dataset I

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PIC
NJW
NCuts
S−link
A−link
AP

(a2) Structural noise on dataset I

1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PIC
NJW
NCuts
S−link
A−link
AP

(b1) Gaussian noise on dataset II

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PIC
NJW
NCuts
S−link
A−link
AP

(b2) Structural noise on dataset II

1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PIC
NJW
NCuts
S−link
A−link
AP

(c1) Gaussian noise on dataset III

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PIC
NJW
NCuts
S−link
A−link
AP

(c2) Structural noise on dataset III

Figure 4: NMI scores of clustering results on the synthetic datasets I-III after adding
different types and different levels of random noise. For each noise level on each dataset, the
experiments repeat for 20 times. The curves are the averages of NMI scores and the bars
indicate standard deviations. (a1-c1): For Gaussian noise, the horizontal axis indicates
that the standard deviations of Gaussian distributions range from σnoise to 5σnoise, where
σnoise is the standard deviation of Gussian noise on the original datasets in Figure 3.
(a2-c2): Different levels of structural noise are obtained by randomly removing different
proportions (0%− 35%) of points from the original datasets in Figure 3.

26

Sample k-medoids AP PIC

Figure 5: The comparisons of detected exemplars on the Caltech-256 set. The first column
is the most difficult sample for clustering in each category, and the other columns are
exemplars of the sample’s clusters given by k-medoids, AP and PIC, respectively. Incorrect
exemplars are marked with a cross.

27

